Ethereum-based customized software and networks, independent from the public Ethereum chain, are being tested by enterprise software companies.[48] Interested parties include Microsoft, IBM, JPMorgan Chase,[33][49] Deloitte,[50] R3,[51] Innovate UK (cross-border payments prototype).[52] Barclays, UBS and Credit Suisse are experimenting with Ethereum blockchain to automate Markets in Financial Instruments Directive (MiFID) II requirements.
Ethereum addresses are composed of the prefix "0x", a common identifier for hexadecimal, concatenated with the rightmost 20 bytes of the Keccak-256 hash (big endian) of the ECDSA public key (the curve used is the so called secp256k1, the same as Bitcoin). In hexadecimal, 2 digits represents a byte, meaning addresses contain 40 hexadecimal digits. An example of an Ethereum address is 0xb794F5eA0ba39494cE839613fffBA74279579268. Contract addresses are in the same format, however they are determined by sender and creation transaction nonce.[34] User accounts are indistinguishable from contract accounts given only an address for each and no blockchain data. Any valid Keccak-256 hash put into the described format is valid, even if it does not correspond to an account with a private key or a contract. This is unlike Bitcoin, which uses base58check to ensure that addresses are properly typed.
^ Mooney, Chris; Mufson, Steven (19 December 2017). "Why the bitcoin craze is using up so much energy". The Washington Post. Archived from the original on 9 January 2018. Retrieved 11 January 2018. several experts told The Washington Post that bitcoin probably uses as much as 1 to 4 gigawatts, or billion watts, of electricity, roughly the output of one to three nuclear reactors.
According to The New York Times, libertarians and anarchists were attracted to the idea. Early bitcoin supporter Roger Ver said: "At first, almost everyone who got involved did so for philosophical reasons. We saw bitcoin as a great idea, as a way to separate money from the state."[126] The Economist describes bitcoin as "a techno-anarchist project to create an online version of cash, a way for people to transact without the possibility of interference from malicious governments or banks".[129]

Another type of physical wallet called a hardware wallet keeps credentials offline while facilitating transactions.[106] The hardware wallet acts as a computer peripheral and signs transactions as requested by the user, who must press a button on the wallet to confirm that they intended to make the transaction. Hardware wallets never expose their private keys, keeping bitcoins in cold storage even when used with computers that may be compromised by malware.[99]:42–45


Ethereum's smart contracts are based on different computer languages, which developers use to program their own functionalities. Smart contracts are high-level programming abstractions that are compiled down to EVM bytecode and deployed to the Ethereum blockchain for execution. They can be written in Solidity (a language library with similarities to C and JavaScript), Serpent (similar to Python, but deprecated), LLL (a low-level Lisp-like language), and Mutan (Go-based, but deprecated). There is also a research-oriented language under development called Vyper (a strongly-typed Python-derived decidable language).
Ethereum was initially described in a white paper by Vitalik Buterin,[10] a programmer involved with Bitcoin Magazine, in late 2013 with a goal of building decentralized applications.[11][12] Buterin had argued that Bitcoin needed a scripting language for application development. Failing to gain agreement, he proposed development of a new platform with a more general scripting language.[4]:88

According to the Library of Congress, an "absolute ban" on trading or using cryptocurrencies applies in eight countries: Algeria, Bolivia, Egypt, Iraq, Morocco, Nepal, Pakistan, and the United Arab Emirates. An "implicit ban" applies in another 15 countries, which include Bahrain, Bangladesh, China, Colombia, the Dominican Republic, Indonesia, Iran, Kuwait, Lesotho, Lithuania, Macau, Oman, Qatar, Saudi Arabia and Taiwan.[169]
Both blockchains have the same features and are identical in every way up to a certain block where the hard-fork was implemented. This means that everything that happened on Ethereum up until the hard-fork is still valid on the Ethereum Classic Blockchain. From the block where the hard fork or change in code was executed onwards, the two blockchains act individually.
The successful miner finding the new block is allowed by the rest of the network to reward themselves with newly created bitcoins and transaction fees.[88] As of 9 July 2016,[89] the reward amounted to 12.5 newly created bitcoins per block added to the blockchain, plus any transaction fees from payments processed by the block. To claim the reward, a special transaction called a coinbase is included with the processed payments.[7]:ch. 8 All bitcoins in existence have been created in such coinbase transactions. The bitcoin protocol specifies that the reward for adding a block will be halved every 210,000 blocks (approximately every four years). Eventually, the reward will decrease to zero, and the limit of 21 million bitcoins[f] will be reached c. 2140; the record keeping will then be rewarded solely by transaction fees.[90]
In the blockchain, bitcoins are registered to bitcoin addresses. Creating a bitcoin address requires nothing more than picking a random valid private key and computing the corresponding bitcoin address. This computation can be done in a split second. But the reverse, computing the private key of a given bitcoin address, is mathematically unfeasible. Users can tell others or make public a bitcoin address without compromising its corresponding private key. Moreover, the number of valid private keys is so vast that it is extremely unlikely someone will compute a key-pair that is already in use and has funds. The vast number of valid private keys makes it unfeasible that brute force could be used to compromise a private key. To be able to spend their bitcoins, the owner must know the corresponding private key and digitally sign the transaction. The network verifies the signature using the public key; the private key is never revealed.[7]:ch. 5
بروتوكول التوجيه بين البوابات (BGP)   بروتوكول التهيئة الآليّة للمضيفين (DHCP) بروتوكول التطبيقات المقيدة (CoAP) نظام أسماء النطاقات (DNS) بروتوكول نقل النصّ الفائق (HTTP) بروتوكول الوصول إلى رسائل الإنترنت (IMAP) بروتوكول النفاذ إلى الدليل البسيط (LDAP) برتوكول نقل أخبار الشبكة (NNTP) بروتوكول التوقيت في الشبكة (NTP) بروتوكول مكتب البريد (POP) بروتوكول معلومات التوجيه (RIP) بروتوكول التدفق في الزمن حقيقي (RTSP) بروتوكول وصف الجلسة (SDP) بروتوكول بدء جلسة (SIP) بروتوكول نقل الملفات (FTP) بروتوكول نقل الملفات البسيط (TFTP) بروتوكول إرسال البريد البسيط (SMTP) بروتوكول إدارة الشبكات البسيط (SNMP) بروتوكول الاتصال الآمن (SSH) بروتوكول تل نت (Telnet) سبيدي (SPDY) مزيد ..
×